

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2159–2163

Uncatalyzed Michael addition of indoles: synthesis of some novel 3-alkylated indoles via a three-component reaction in solvent-free conditions

Mohit L. Deb and Pulak J. Bhuyan*

Medicinal Chemistry Division, Regional Research Laboratory, Jorhat 785 006, Assam, India

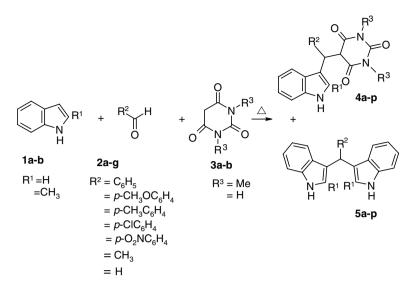
Received 15 December 2006; revised 11 January 2007; accepted 18 January 2007 Available online 24 January 2007

Abstract—Synthesis of some novel 3-alkylated indoles via an uncatalyzed Michael addition of indoles using three components in one-pot solvent-free conditions is reported. The mechanism was established by performing the reaction in two steps. The reaction was also studied in different solvents and an important solvent effect was noticed. © 2007 Elsevier Ltd. All rights reserved.

The importance of indoles is well recognized by synthetic as well as biological chemists.¹ The most ubiquitous of the known bioactive alkaloids are based on the indole moiety.² Medicinal chemists repeatedly turn to indolebased compounds as a target pharmacophore for the development of therapeutic agents.³ The prevalence of this motif in natural and bioactive products continues to be a vector in the development of new methodology to find useful compounds.⁴ Michael addition of indoles to α,β -unsaturated systems is an efficient approach to indole-containing molelcules.⁵ Owing to the total atom efficiency these reactions are inherently green.⁶ The regioselectivity in the addition of indoles to electrondeficient alkenes is strongly controlled by the reaction conditions: N-alkylation under alkaline conditions and C-3-substitution in acid-catalyzed reactions. Besides protic acids, a number of Lewis acid catalyzed methodologies for the C-3 alkylation of indoles by Michael addition have been reported⁷ and the use of lanthanide triflates⁸ represents an attractive alternative to their classical competitors such as AlCl₃ and SnCl₄. Unfortunately, lanthanide triflates are rather expensive and their use in large-scale synthetic methodology is very limited. Recently CeCl₃·7H₂O-NaI supported on silica gel was successfully utilized for the Michael addition of indoles to an α , β -unsaturated system.⁹

Barbituric acids are an important class of compounds that constitute the basic moiety of a number of clinically used hypnotic drugs of the barbiturate class (5-alkylated barbituric acids), for example, Veronal, Seconal, Phenobarbital and Luminal.¹⁰

Development of new solid-phase (solvent-free) reactions and transferring solution-phase reactions to solid-phase are subjects of recent interest in the context of generating libraries of molecules for the discovery of biologically active leads and also for the optimization of drug candidates.¹¹ One-pot multi-component reactions (MCRs), by virtue of their convergence, ease of execution and generally high yields of products have attracted considerable attention.¹² In the past decade there have been tremendous developments in three- and fourcomponent reactions and great efforts have been and continue to be made to find and develop new MCRs.¹³


In our continued interest in the synthesis of diverse heterocyclic compounds of biological importance,¹⁴ we report here the synthesis of some novel 3-alkylated indoles via a three-component reaction in solvent-free conditions. The reaction, which gave access to 5-alkylated barbituric acids also demonstrated an uncatalyzed Michael addition of indoles to an α , β -unsaturated system (Scheme 1).

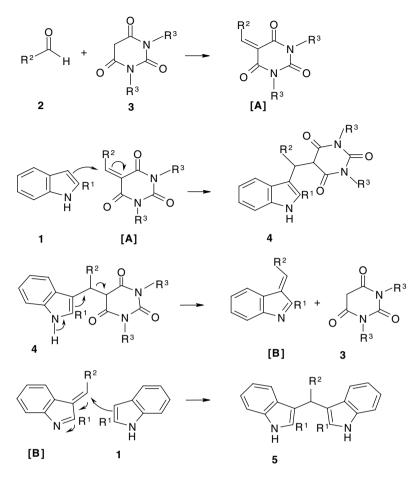
Utilizing equimolar amounts of indole 1a benzaldehyde 2a and N,N-dimethylbarbituric acid 3a in the absence of solvents at 95 °C for 15 min afforded¹⁵ after work-up,

Keywords: Indoles; Michael addition; Pyrimidines; Solvent-free reaction; Multicomponent reaction.

^{*} Corresponding author. Fax: +376 2370011; e-mail: pulak_jyoti@ yahoo.com

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.105

Scheme 1.


67% of 3-alkylated indole 4a as a crystalline compound, the structure confirmed from the spectroscopic data and elemental analysis. In addition to the Michael adduct, we isolated 15% of 3.3'-bisindolylmethane **5a**, with physical and spectroscopic data comparable in all respects to those of an authentic sample.¹⁶ Similarly compounds 4b-p and 5b-p were synthesized from 1-3 and characterized. The reaction is equally applicable to aliphatic aldehydes. The three-component reactions and our observations are recorded in Table 1. 2-Methylindole was found to be highly reactive and the formation of compounds 4 and 5 to depend on the reaction time. Thus, we obtained a maximum yield of compound 4 in 10 min, while a reaction time above 15 min maximized the yield of bisindolylmethanes 5. However, we obtained 4 as a minor compound and 5 as a major compound when 3b was utilized in the three-component reactions.

A reasonable mechanism for the formation of 3-alkylated indoles from the three-component reaction is outlined in Scheme 2. The sequence starts with the formation of Knoevenagel product [A] from 2 and 3 under thermal condition which then suffers a nucleophilic attack by indole 1 to give Michael adduct 4. The formation of minor bisindolylmethane 5 can be explained by the formation of small amount of [B] from product 4 with the elimination of barbituric acid 3 under thermal conditions.¹⁷ The intermediate [B] then adds a second indole to give 5. Comparatively easy formation of intermediate [B] might be the reason for small yields of the compounds 4n-p and hence the maximum formation of bisindolylmethanes 5n-p.

We confirmed the mechanism by performing the transformations in two steps. First we synthesized the α , β unsaturated system [A] by condensing aldehydes 2 with barbituric acids 3 following our own method¹⁸ and then reacted [A] with indole at 85 °C for 10–25 min in the absence of solvent.¹⁹ As expected we obtained 3-alkylated indoles 4 as a major product and bisindolylalkanes 5 as a minor product (Table 2). The small amounts of barbituric acids 3 eliminated during the process were isolated and characterized. However,

Table 1. Three-component reactions of 1-3 in solvent-free conditions and synthesis of 3-alkylated indoles 4 and bisindolylmethanes 5

\mathbf{R}^1 of 1	R^2 of 2	R ³	Time (min)	Temperature (°C)	Product 4	Yield (%)	Product 5	Yield (%)
Н	C_6H_5	CH ₃	15	95	4a	67	5a	15
Н	4-MeC ₆ H ₄	CH_3	15	85	4b	65	5b	12
Н	4-MeOC ₆ H ₄	CH ₃	15	85	4c	68	5c	10
Н	$4-ClC_6H_4$	CH ₃	15	85	4d	61	5d	14
Н	$4-O_2NC_6H_4$	CH ₃	15	110	4 e	70	5e	12
CH_3	C ₆ H ₅	CH ₃	12	80	4f	73	5f	10
CH ₃	4-MeC ₆ H ₄	CH ₃	10	80	4g	70	5g	12
CH_3	4-MeOC ₆ H ₄	CH ₃	10	80	4h	74	5h	10
CH ₃	$4-ClC_6H_4$	CH ₃	15	80	4i	74	5i	10
CH_3	$4-O_2N-C_6H_4$	CH ₃	15	80	4j	74	5j	11
Н	CH ₃	CH ₃	25	80	4k	64	5k	15
Н	Н	CH ₃	25	100	41	74	51	10
CH ₃	Н	CH ₃	20	120	4m	75	5m	8
Н	C_6H_5	Н	25	120	4n	22	5a	59
CH_3	C_6H_5	Н	25	150	40	24	5f	65
Н	4-MeC ₆ H ₄	Н	25	150	4p	23	5b	62
				150	-			

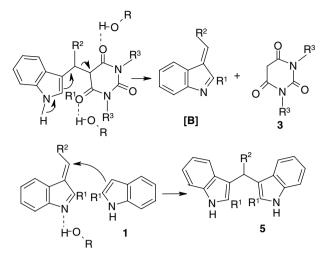

Scheme 2.

Table 2. Two-component reactions of 1 & [A] in solvent-free/in solvent (acetonitrile) and synthesis 4 and 5

Entry	Solvent free/(in solvent) Time (min/h), Temperature (°C)	Product 4	mp (°C)	Yield (%)	Product 5	Yield (%)
1	15 min, 85 (11 h), (rt)	4 a	175-176	65 (64)	5a	10 (8)
2	15 min, 85 (11 h), (rt)	4b	156-158	72 (75)	5b	7 (5)
3	15 min, 85 (10 h), (rt)	4c	171-173	74 (71)	5c	5 (4)
4	15 min, 85 (11 h), (rt)	4d	161-162	70 (70)	5d	8 (5)
5	15 min, 80 (9 h), (rt)	4 e	148 - 150	65 (70)	5e	11 (7)
6	5 min, 80 (9 h), (rt)	4 f	177 - 178	70 (72)	5f	10 (8)
7	5 min, 80 (9 h), (rt)	4g	171-173	72 (70)	5g	10 (7)
8	7 min, 80 (9 h), (rt)	4h	103-106	68 (72)	5h	12 (5)
9	8 min, 85 (10 h), (rt)	4i	179-181	68 (70)	5i	12 (10)
10	5 min, 85 (10 h), (rt)	4i	189-190	55 (52)	5j	20 (12)
11	40 min, 85 (13 h), (rt)	4k	163-164	63 (65)	5k	8 (5)
12	30 min, 85 (9 h), (rt)	41	175-176	74 (75)	51	_
13	30 min, 85 (9 h), (rt)	4m	173-174	67 (72)	5m	
14	40 min, 85 (13 h), (rt)	4n	163-164	23 (22)	5a	60 (55)
15	30 min, 85 (9 h), (rt)	4 o	175-176	26 (19)	5f	69 (62)
16	30 min, 85 (9 h), (rt)	4p	173-174	21 (20)	5b	58 (55)

in the case of formaldehyde, 3-alkylated indoles were obtained as the sole product. The reason is that unlike aromatic and aliphatic aldehydes containing an α -hydrogen, the intermediate is not stabilized by either resonance or hyperconjugation.

The reaction was now studied in acetonitrile, dioxane, methanol and ethanol, and in all the cases the desired compounds 4 were not formed even under refluxing conditions. However, in protic solvents we observed the formation of bisindolyl-methanes **5** as the sole products, which can be reasonably explained by our recent study.^{14b} We also studied the two-component reactions in various solvents. Accordingly, when equimolar amounts of indoles and intermediates [**A**] were reacted in acetonitrile at room temperature for 9–13 h, we obtained (19–75%) of the Michael addition products **4** and (4–62%) of bisindolylmethanes **5**, while in refluxing

acetonitrile these reactions required 1 h to give similar results (Table 2).²⁰ As in the three-component reactions, in entries 14-16 we obtained 4 as minor and 5 as major products. However, in EtOH or MeOH, we obtained bisindolylmethanes 5 as major products (70-75%) and Michael adducts 4 as minor compounds, as rationalized by the mechanism shown in Scheme 3. The protic solvents help the elimination of 3 and thus enhance the formation of intermediate [B]. This was further confirmed by refluxing Michael adduct 4 with an equimolar amount of indole 1 in MeOH for 0.5 h which afforded 80% of bisindolyl methane 5. In the case of formaldehvde, when the Michael adduct and indole were heated in methanol, bisindolylmethane was not formed. Thus, the non-formation of intermediate [A] in the three-component reactions in different solvents is the reason for the non-formation of product 4.

In conclusion we have reported the synthesis of some novel 3-alkylated indoles via three-component reactions in solvent-free conditions. Moreover, the results demonstrated a novel uncatalyzed Michael addition of indoles to an α , β -unsaturated system in a one-pot three-component reaction under solvent-free conditions. The mechanism of the three-component reaction was established by synthesizing the proposed intermediate and by performing the overall transformation in two steps.

Acknowledgements

We thank the DST, New Delhi, for financial support. M.L.D. thanks the CSIR (India), for the award of a Senior Research Fellowship.

References and notes

 (a) Sundberg, R. J. In *The Chemistry of Indoles*; Academic Press: New York, 1970; pp 78–83; (b) Marion, L. In *The Alkaloids. Chemistry and Physiology*; Academic Press: New York, 1952; Vol. 2, pp 371–481.

- (a) Gribble, G. W. In *Comprehensive Heterocyclic Chemistry*, 2nd ed.; Pergamon Press: New York, 1996; Vol. 2, pp 203–257; (b) Snieckus, V. In *The Alkaloids*; Academic Press: New York, 1968; Vol. 11, pp 1–33.
- 3. Gribble, G. W. In *Comprehensive Heterocyclic Chemistry*, 2nd ed.; Pergamon Press: New York, 1996; Vol. 2, pp 211–213.
- (a) Kam, T. S. In Alkaloids, Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Amsterdam, 1999; Vol. 4, pp 285–345; (b) Irie, T.; Kubushirs, K.; Suzuki, K.; Tsukazaki, K.; Umezawa, K.; Nozawa, S. Anticancer Res. 1999, 31, 3061–3066; (c) Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000, 63, 596–598; (d) Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Biochem. Pharmacol. 2002, 53, 1085–1097.
- (a) Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.; Ching-Fa, Y. *Tetrahedron* 2005, *61*, 11751–11757;
 (b) Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Mareantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2003, *68*, 4594–4597.
- 6. Anastas, P.; Warner, J. C. In *Green Chemistry; Theory and Practice*; Oxford, UK, 1998.
- (a) Yadav, J. S.; Abraham, S.; Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165–2169; (b) Zhan, Z.-P.; Yang, R.-F.; Lang, K. Tetrahedron Lett. 2005, 46, 3859–3862; (c) Ji, S.-J.; Wang, S.-Y. Synlett 2003, 2074–2076.
- (a) Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S. *Tetrahedron Lett.* **2000**, *41*, 3107–3111; (b) Manabe, K.; Mori, Y.; Wekabayashi, T.; Nagayama, S.; Kobayashi, S. *J. Am. Chem. Soc.* **2000**, *122*, 7202–7207.
- Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2003, 68, 4594–4597.
- (a) Fisher, E.; Moring, J. R. Ther. Ggw 1903, 44, 97–105;
 (b) Bobranski, B. Wiad. Chem. 1977, 31, 231–278;
 (c) Gauri, K. K.; Kohlage, H. Chemotherapy 1969, 14, 159–170;
 (d) Gauri, K. K.; Rohde, B. Klin. Wochenschr. 1969, 47, 375–379.
- 11. Tanaka, T.; Toda, F. Chem. Rev. 2000, 100, 1025-1074.
- (a) Weber, L.; Illegen, K.; Almstetter, M. Synlett 1999, 366–374; (b) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Rev. 1996, 29, 123–131.
- (a) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestiopolov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. L.; Evans, D. H. Org. Lett. 2002, 4, 423–425; (b) List, B.; Castello, C. Synlett 2001, 1687–1689; (c) Nair, V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427–4429; (d) Bagley, M. C.; Cale, J. W.; Bower, J. Chem. Commun. 2002, 1682–1683; (e) Cheng Chen, J. F. M.; Arrhenius, T.; Nadzen, A. Tetrahedron Lett. 2002, 43, 6293–6295; (f) Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 64485–64488; (g) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147–3150; (h) Li, Y.; Yuan, X.; Ding, K. Org. Lett. 2002, 4, 3309–3311; (i) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435–438; (j) Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Org. Lett. 2003, 5, 1205–1208.
- (a) Bhuyan, P. J.; Boruah, R. C.; Sandhu, J. S. *Tetrahedron Lett.* **1989**, *30*, 1421–1422; (b) Deb, M. L.; Bhuyan, P. J. *Tetrahedron Lett.* **2006**, *47*, 1441–1443; (c) Devi, I.; Bhuyan, P. J. *Synlett* **2004**, 283–286; (d) Devi, I.; Borah, H. N.; Bhuyan, P. J. *Tetrahedron Lett.* **2004**, *45*, 2405– 2408; (e) Devi, I.; Bhuyan, P. J. *Tetrahedron Lett.* **2004**, *45*, 8625–8627; (f) Devi, I.; Baruah, B.; Bhuyan, P. J. *Synlett* **2006**, 2593–2596.
- 15. An equimolar amount indole **1a** (117 mg, 1 mmol), benzaldehyde **2a** (106 mg, 1 mmol) and *N*,*N*-dimethylbar-

bituric acid **3a** (156 mg, 1 mmol) were heated at 95 °C for 15 min. The reaction mixture was cooled to rt and petroleum ether:ethanol (4:1) (5 ml) added. After few minutes a solid appeared and was filtered off and recrystallized from ethanol:chloroform (3:1) (241 mg, 67%) m.p = 175–176 °C. IR (KBr): 3436 (NH stretch), 3148 (w), 3048 (w), 2956 (w), 1748 (w), 1693 (s), 1677 (s), 1665 (s), 1378 (m), 740 (m) cm^{-1.} ¹H NMR (300 MHz, CDCl₃ + CD₃COCD₃) δ 3.00 (s, 3H, NMe), 3.11 (s, 3H, NMe), 4.36 (d, 1H, J = 2.85 Hz), 5.24 (d, 1H, J = 2.7 Hz), 6.98–7.41 (m, 10H), 8.21 (s, 1H, NH). ¹³C NMR (75 MHz, CDCl₃ + CD₃COCD₃) δ 28.6, 28.7, 48.8, 55.0, 111.6, 114.6, 119.5, 120.0, 122.7, 124.2, 126.9, 128.3, 128.4, 128.8, 136.5, 138.8, 151.4, 168.2, 169.2: m/z 362 (M+H)⁺. Anal. Calcd for C₂₁H₁9N₃O₃: C, 69.80; H, 5.26; N, 11.63. Found: C, 70.25; H, 5.17; N, 11.52.

- Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Tetrahedron 2004, 60, 2051–2155.
- Bhuyan, P. J.; Boruah, R. C.; Sandhu, J. S. J. Org. Chem. 1990, 55, 568–571.
- 18. Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453–6456.

- 19. Equimolar amounts of indole 1a (117 mg, 1 mmol) and [A] (244 mg, 1 mmol) were mixed till homogeneous and heated at 85 °C for 15 min. The reaction mixture was cooled to rt and added petroleum ether:chloroform (4:1) (5 ml). The solid obtained was filtered off and recrystallized from a mixture of ethanol:chloroform (3:1). The compound was identified as 4a from the spectroscopic data and elemental analysis. Yield = 234 mg (65%). The filtrate was evaporated to dryness and bisindolylmethane 5a isolated from the residue by column chromatography on silica gel column (eluent:hexane) and characterized.
- 20. Equimolar amounts of indole 1a (117 mg, 1 mmol) and [A] (244 mg, 1 mmol) in acetonitrile (15 ml) were stirred for 11 h (or refluxed for 1 h). The solvent was removed under reduced pressure and added petroleum ether:chloroform (4:1) (5 ml). The solid obtained was filtered off and recrystallized from a mixture of ethanol:chloroform (3:1). The compound was identified as 4a by spectroscopic and elemental analyzes. Yield = 230 mg (64%). The filtrate was evaporated to dryness and the bisindolylmethane 5a isolated from the residue by column chromatography on silica gel column (eluent:hexane) and characterized.